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Almtraet-A theoretical technique to predict the thermal conductivity of heterogeneous solid mixtures has 
been developed. Tsao’s model for predicting the thermal conductivity of two phase solid mixtures has been 
modified and extended. The technique of this paper does not require experimental data on the mean and 
standard deviations of the one dimensional porosity function describing the distribution of the discontinuous 
phase as is the case with Tsao’s model. A parabolic distribution of the discontinuous phase is assumed and 
the constants of the parabolic distribution are determined by analysis and presented as a function of the 
discontinuous phase volume fraction. Thus, the need for values of the mean and standard deviations is 
circumvented. The equivalent thermal conductivity of a unit cube of the mixture is derived in terns of the 
distribution function, and the thermal conductivity of the constituents. The technique is shown to predict 

thermal conductivity values within 8 per cent of available experimental data. 
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NOMENCLATURE 

constant in equation (5); 
distance between the vertex and the 
edge of the square in Fig. 3 [ft or cm] ; 
constant in equation (5); 
negative value of C ; 
constant in equation (3); 
constant in equation (3); 
diameter of pore [cm] ; 
emissivity ; 

thermal conductivity [Btu/h ft “F or 
cal/s cm “C] ; 

3/* ; 
phase volume fractions ; 
one dimensional porosity [ft - ‘1; 
two dimensional porosity; 
bulk porosity ; 
cross-sectional pore fraction ; 
longitudinal pore fraction ; 
thermal resistance [h “F/Btu] ; 
absolute temperature [OR or “K]. 

Greek symbols 

Y, geometrical pore factor ; 

4 a value used in Fig 3 [ft] ; 

I.4 mean of P, [ft- ‘I; 

0, standard deviation of P, [ft - ‘1; 

cf, radiation constant [erg/cm2 s ‘C4] ; 
$, sphericity. 

Subscripts 

5 
continuous phase; 
discontinuous phase; 

e, equivalent ; 

i, number of phase ; 

m, mean ; 

s, solid. 

INTRODUCTION 

A NUMBER of studies [l-1OJ have been conducted 
to develop techniques for predicting the thermal 
conductivity of heterogeneous systems. So far, 
no general equation exists to predict the thermal 
conductivity of two-phase mixtures. Tsao [11] 

t Instructor, Me&an&l Engineering Department: has developed a relationship as seen in the 
$ Professor, Mechanical Engineering Department. Appendix for predicting the thermal conduc- 
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tivity of two-phase materials; however, experi- 
mental data are necessary before values of 
conductivity can be calculated. These experi- 
mentally determined data are the conductivity 
of the constituents and p and cr, the mean 
and standard deviation of a “one dimensional 
porosity” P,, which relate P, to a “two dimen- 
sional porosity”, P,. However, it should be 
emphasized that ,u and cr are difficult to obtain. 
The product of P, and P, equals P,, the bulk 
porosity. PI and P, were developed to overcome 
the inadequacy of characterizing the material 
by the bulk porosity, P,. Tsao demonstrated 
this inadequacy by showing that using the 
bulk porosity in the two simplest hetero- 
geneous models-series or parallel arrange- 
ments of the constituents--for effective thermal 
conductivity produced different values of ther- 
mal conductivity for a given case. Tsao de- 
veloped a relation for P, in terms of P, using 
probablistic theory and then using the additivity 
of conductances in parallel developed a relation 
for the effective thermal conductivity of the 
mixture in terms of PI, p, CT and the thermal 
conductivity of the constituents. 

This study which extends Tsao’s model 
circumvents the necessity of experimentally 
determining p and cr since these data are not 
required. The proposed technique is based on 
assuming a parabolic distribution of the dis- 
continuous phase in the continuous phase. 
The parabolic distribution is expressed in 
terms of constants dependent on the propor- 
tions of the constituents. Analysis yields values 
of these constants as a function of the con- 
stituent proportions. A unit cube of the mixture 
is divided into differential elements perpendicu- 
lar to the assumed unidirectional heat flow. 
Each element contains some of the continuous 
and the discontinuous phases. An expression 
for equivalent thermal resistance is derived 
for the cube on the basis of the anology between 
heat and electrical flow. This expression is in 
terms of the constants of the parabola and ther- 
mal conductivity of the constituents. Thus 
the only requirements for predicting the equiva- 

lent conductivity of the mixture using the 
model are the conductivities and proportions 
of the constituents. The proposed model is 
extended further to predict the thermal con- 
ductivity of three and multiphase mixtures for 
certain cases. The prediction technique is sup- 
ported by experimental data. Figure 1 classifies 
heterogeneous systems and indicates the area 
of concentration of this study. 

RELATED STLJDIES 

Maxwell [12] pioneered in the study of the 
thermal conductivity of two-phase mixtures. 
He derived an equation to predict conductivity 
on the basis of potential theory. Rayleigh [13] 
in 1892 derived a series solution for heat 
conduction through a square array of uniformed 
sized spheres. Fricke [14] extended Maxwell’s 
analysis and derived an equation for ellipsoids 
suspended in a continuous phase. Niesel [15] 
developed an equation to predict the thermal 
conductivity of solid mixtures containing ran- 
domly-oriented, long, thin cylindrical dispersed 
particles. Bruggeman [16] also developed a 
relation for thermal conductivity of platelets 
in continuous phase. Powers [ 171 utilized 
Ohm’s law for parallel and series orientations 
of the continuous and discontinuous phases. 
Hamilton [18, 191 classified mixtures into four 
groups. 

ClassI. kc&k,, or :>lOO; 
d 

ClassII. k,+k, or %>lOO; 
c 

Class III. 1 < ; c 100; 
d 

Class IV. 1 < $ < 100. 
e 

He was mainly concerned with Class II mixtures 
since Class I, III and IV mixtures are amenable 
to Maxwell’s equation. Hamilton accounted 
for the shape of the dispersed phase in his 
technique for predicting thermal conductivity. 
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r--Tie eleme”+ 
A SINGLE-PHASE SYSTEMS 

Known Woperties 
2. Solid solution 
3. Liquid solution 

B. TWO-PHASE SYSTEMS 
I. Solid -solid mixtures 

i 

(Tw;,,“;hs; solid mixtures) 

Class II* I 
Class III 
Class nt 

2. Suspensions 
3. Emulsions 
4. Pacited Beds 
5. Powder Beds 
6. Porous Materials 

7 
I 

Predicted mean thermal 
conductivity as a result 
of this Study, accuracy 

8% for two-phase solid 
mixtures 

I 
Predicted mean thermal 
conductivity of some porous 
systems as a result of this 
study 

C. THREE-PHASE SYSTEMS 
I. Two-phase solid-solid 

n‘ixtures with porosity 
2. Three-phase solid mixtures 

Case I 
Cose 2 zz 2 
Case 3 Case 7 
Case 4 

D. MULTI-PHASE SYSTEMS 1 “Hamilton has derived an equation to predict the 

thermal conductivity of Class II mixtures accurately 

FIG. 1, Classification of heterogeneous systems and systems investigated in this study. 

X 

Continuous phase 

Cc&nuous phase 

FIG. 2. Model for the study of the thermal conductivity of two-phase mixtures [li] 
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Hamilton also developed an equation for 
a mixture of n phases for known shapes of the 
discontinuous phase. Franc1 and Kingery [20] 
present an acceptable correlation for the pre- 
diction of the thermal conductivity of porous 
materials which can be extended to three phase 
materials for low temperatures-low enough 
to neglect radiation. Loeb [21] has attempted 
to compensate for radiation effects. Tsao’s 
study, which has been cited, appeared to offer 
the greatest possibility for a general approach 
to predicting thermal conductivity of two phase 
mixtures and Tsao’s study serves as the basis 
for this paper. 

The Appendix gives some of the various 
equations presented in the literature to predict 
thermal conductivity of mixtures. References 
[l, 11, 12, 17-211 compare the equations and 
discuss their applicability. The literature reveals 
no general technique to predict the thermal 
conductivity of two-phase mixtures. 

ANALYSIS 

Two-phase mixtures 
The analysis is based on the following 

assumptions for a unit cube of the mixture as 
seen in Fig. 2(a). These assumptions are: 

1. 

2. 

3. 

4. 
5. 

6. 
7. 

The heat flux is unidirectional in the x 
direction ; 
Thermal convection and radiation are 
negligible ; 
Contact resistance between the continuous 
and discontinuous phase is negligible ; 
No porosity exists in the mixture; 
The discontinuous phase is uniformly 
dispersed in the continuous phase ; 
Thermally, the mixture is isotropic; 
In the mechanical mixing process, no 
chemical reaction occurs. 

The approach of Taso is used. A unit cube 
of the mixture as shown in Fig 2(a) is sliced 
into many layers of width dx parallel to the 
yz-plane. Phase,, of each layer is arranged 
as shown in Fig. 2(b) since conductances in 
parallel are additive and the effective thermal 

(a) 

(b) 

8 

.x 

Phase 

.x 

b-la!- ~_ +-B/Z-b --2 
FIG. 3. Phase distribution for a two-phase mixture as 

represented by : 
(a) the x-axis bisecting the square (b) the x-axis coinciding 
with the lower border of the square. This figure is used in 

conjunction with equation (6). 

conductivity is unaltered. Figure 2(c) is shown 
to fully explain Pi and P,. The discontinuous 
phase is pictured as concentrated in one quad- 
rant of the cube. Then 

P, = 
xg - x1 

unit length 

and 

P, = 
area of D 

unit area’ 

Thus P, = PIP,. Now instead of arranging 
the thin layers in the sequence as indicated in 
Fig. 2(d) as Tsao did, one can arrange these 
layers as shown in Fig. 2(e). Thus one can now 
now attempt to develop an expression for the 
thermal conductivity in terms of y(x) which is 
P,(P,) and then determine y(x) for various 
nrooortions of the constituents. It can be 
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shown that the equivalent thermal resistance 
of the configuration shown in Fig. 2(e) is 

x 

R, = 2 
s 

dx 1 - 2x 

kc + (kd - k,ly + k,-’ 
(1) 

0 

which can be used to obtain the thermal con- 
ductivity since 

k, and kc are considered known, but Y(x) is 
unknown. If y is known, k, can be calculated. 
It is first assumed that P2(P1) or y(x), the dis- 
persion of the discontinuous phase which 
represents the discontinuous volume fraction 
is a normal distribution curve due to the assumed 
randomness of dispersion of the discontinuous 
phase in the continuous phase. Thus 

y=o at x=3 

which represent the maximum discontinuous 
volume fraction. Equation (5) is an even 
function of x; hence only positive values of x, 
i.e. 0 < x < 4 need be considered. Using the 
above stated boundary conditions one obtains 

y = C, exp (- C,x’). (3) and 

Now C1 and Cz are almost impossible to de- 
termine unless the expression is expanded in 
a series such as 

y = c, 
( 

C2X4 
1 - c,x2 + -L - 21 > ... * (4) 

The range of x can be seen to vary from -$ 
to 3 for the coordinate system of Fig. 2(e). 
The above series converges rapidly for all x 
between -9 and i; consequently, one may 
eliminate all terms except the first two and 

y = B + cx2. (5) 

Thus, the normal distribution has been reduced 
to a parabolic function. It can be seen that there 
will be a set of constants B and C for each 
discontinuous volume fraction, P,, and con- 
sequently a given function y(x) or P,(P,) for 
equation (1). Thus, one can simplify the calcula- 
tions involved in equation (1) by evaluating 
B and C values as a function of P, since the 
discontinuous volume fraction would be a 

known value for a given two-phase mixture. 
Now 

Pd = 2 y dx. 1 
0 

The problem now resolves to evaluating the 
constants B and C for the limiting and interven- 
ing conditions and the corresponding P, values. 
First assume boundary conditions as 

y=l at x=0 

and 

B=l 

c= -4 

Now Pd, the discontinuous phase, is calculated 
to be O-667 which is the maximum discontinuous 
phase volume fraction which equation (5) can 
represent. 

The boundary conditions will change as P, 
decreases from the maximum value. Thus for 
Pa less than 0.667, the general conditions are 

y = B + Cx2 1x1 G a < 3 

y=o at a < 1x1 < + 

and 

Y<l at x = 0. 

Other boundary conditions can be visualized 
by considering the distribution of the discon- 
tinuous in the continuous phase as shown in 
Figs. 3(a) and 3(b). Figure 3(a) pictures the 
discontinuous phase to be centred in the square. 
The boundary of the discontinuous phase is 
symmetrical with respect to the x and y axes. 
For simplicity, the assumption is made that 
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the distances, b, between the vertices of the and 
boundary of the discontinuous phase and the 
edges of the squares are equal. The x axis is 

c = -4J(&). (6b) 

shifted to coincide with the lower edge of the B and C are plotted in Fig. 4 as functions of Pa. 
square in Fig. 3(b). Thus Fig. 2(e) and Fig. 3(b) The two-phase mixture is reduced to the 
are the same. It is assumed further in Fig. 3 limiting case of one-phase when y = 0 at 
that as P, decreases from its maximum value x = 0 and Pd = 0. Now attention can be 
(0.667) the absolute value of y at x = 0 shrinks focused on equation (1). Substituting equation 

0 I I I I I I 
01 O-2 03 0.4 05 06 OS 

e 

FIG. 4. B and C, constants in equation (5), vs. P,, discon- 
tinuous phase volume fraction. 

26 and the absolute value of x shrinks 26 at 
y = 0, too. From this assumption and equation 
(5), it is easy to show that 

B = -4/C. 

Constants B and C can be calculated in terms 
of P, as follows. From Fig. 3(b), 

B/2 
P,=2 1 ydx 

0 

BI2 

= 2B2/3 

or 

(5) into equation (l), letting C = c’ since 
C < 0 yields 

“12 

Re = 2 J, [kc + B(k, - kc;- C’(k, - kc)x2 

1-B - . 
+ k, 

(7) 

Rearranging the first term in the denominator 
of equation (7) gives 

kc + B(k, - kc) = BK, + k,(l - B), (8) 

which is always greater than zero since B 
varies from 0 to 1. Equation (7) can be integrated 
resulting in 

B = J(3~,/2) (6a) (A) k, > k,+ 



(a) Analysis of the denominator of the log term 
in equation (10) for Class II mixtures, kd 9 kc, 

+ 
Heat Flow 

indicates the equation must be used cautiously. 
It is possible to obtain log co when evaluating 
the log term if the denominator of the log term 
is not evaluated accurately. This can be seen as 
follows. Consider the denominator of the inte- 
grand of equation (7) 

t kc + B(k, - kc) - C’(k, - kc) x2 

and it can be seen that there is a functional 
relationship between the above expression and 
the denominator of the log term in equation (10). 
Since kd $ k,, one can write 

(b) 
k, + B(k, - kc) - C’(k, - kc) x2 G k&B - C’x2 

and the right-hand side of the above expression 
equals zero at x = B/2. Thus 

FIG. 5. (a) Phase distribution for class II mixtures (b) 
schematic rewesentation of eauivalent abase distribution kc + B(k, - kc) - c’(kd - kc) x2 1 x=B,z = 0 

for class II kixtures. * 
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Thus equation (9) and equation (10) can be used 
in conjunction with 3 and C values obtained 
from equations (6) or Fig. 4 for a given Pd and 
the ~onductiviti~ kd and kc to predict conduc- 
tivity values of two-phase mixtures. Some 
caution must be used with equation (10) as will 
be seen. 

Re = J(-C’(k, - kc) ;kc + B(k, - kc)]) 

B 
x tan-l- 

Jl 

- C’(k, - kc) 
2 k + BP, - i k,) 

1-B 

+ k, ’ 

(W kd > kc 

or 

[ 
J&e + W, - k)) - &‘(C(k, - k)) 1 
[ Jik + Wb - kc)) + ; ,/‘C’(k, - kc) 1 G 0. 

(9) since 

JPc + W, - k,)) + ; ,/‘E@(k, - k,)) > 0, 

then 

&k + W, - U 

- $‘{C’(k, - kc)) A 0 (11) 

(10) and equation (11) is identical to the denominator 
of the log term in equation (10). Thus for Class II 
mixtures, this term must be evaluated carefully 



256 S C. CHENG and R. f. VACKON 

or log co which is 00 results. This analysis is 
limited to Class II mixtures since k9 4 k, for this 
Gt&SS iX&. 

Further analysis of ~nat~un (IO) for CIass II 
mixtures shows the equation can be simphfied. 
Figure 3(b) is shown in Fig. 5(a). Since Fig. 3(b) 
is symmetrical with respect to the axis only 

/--Ccotifluous Phase 

Second 
Discontinuous Phase 

Continuous Phase 

Second 
Discontinuous Ph%@ 

tc) 

x 

Fm. 6. Model for the study of the thertna~ wnductivity nf 
three-phase mixtwes. 

positive values of the figure are shown. Figure 
S(b) represents the equivalent resistance orien- 
tation of the phaw. Using Fig S(b)> one can 
write 

R,, and R,, represent the resistance of the con 
tinuous phase in rectangle uufe and the remainder 
of the continuous phase res~~~~ve~y* Since 
k,+ $ k, R, + Rd, equation (22) can be written as 

Rc, -4 R, & - 
RCI 

+ R,, = R, + R,, 5 R,,. (13) 

lotion (13) indicates the majority of the re- 
sistance is ~e~~~~n~ on the resistance of the 
rectangle fwfe for Class II mixtures. Thus 

and it can lx shown that R,, is the second 
term of equation (IO). Hence 

k 
km 5 -_!I-. 

1 - 8’ 

which is valid as $ong as Pb (: 66.7 per cent. 
If Pd = 56-7 per cent, k,,, is calculated using 
equation (10) with B = 1. 

The development of an lotion to predict 
the thermal ~ndu~tivit~ of three-phase mixtures 
and some multiphase mixtures is based on the 
independence of k, on kd when R, 4 R, or 
/cd @ k,. The three-phase mixtures are reduced 
to equivalent one or more than one two-phase 
mixtures as wiff be seen One can construct 
Figs. 6(a, b, c) for a mixture of two d~s~ut~uous 
phases in a continuous phase using the same 
assumptions as were used in the previous section 
for two-phase mixtures. Figure 6(c) is merely 
another re~r~e~tatio~ of6(b). This figure shows 
the refaiive phase distributions of the firs% 
discontinuous phase, curve 1, along with the 
distribution of the second discontinuous phase, 
curve 2. Curve 1 is in general a continuous curve 
which can be determined as was done fur the 
two-phase case_ In general, curve 2 is an arbitrary 
cont~uuous~ piece-wise continuous or discon- 
tinuous curve. No simpIe analytical technique 
exists to determine curve 2. Curve 2 can be 
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-4 I I 
15 20 25 

8 , % 

FIG. 7. Per cent deviation of predicted thermal conductivity 
values for class III mixtures from corresponding experi- 

mental values of thermal conductivity vs. Pd. 

determined experimentally and then R, and 
hence k, can be determined from 

R, = 
s 

dx 

k, + (k,l - k&r + (k,, - 0,’ 
(15) 

However, it is not always possible to determine 
curve 2. Special cases of three-phase mixtures are 
developed as follows by reducing the three phase 
mixtures to equivalent two-phase mixtures. 

Considering the infinite number of ratios and 
combinations of kdl/kc and k,,/k,, seven general 
cases are classified as follows : 

Case 1. 4 > NO,!; > 100; 
E e 

Case2. $> 100,10i~i100; 
c c 

Case3. 10i~~100,10~~<100; 
e e 

Case 4. 4 
c 

N 10,: W 10; 
E 

Case 5. 
k 
$ N 10,: Iv 1; 

c c 

Case 6. % N - 1; 
c 

F 
c 

Case 7. b? < 1 and/or % < 1. 
c E 

These cases are considered as follows : 

k 
Casel. F> lOO,+ > 100. 

E e 

The discontinuous phase can be considered to 
be composed of the first and second discon- 
tinuous phases. Thus Pd = Pa1 + Pdz and the 
mixture is reduced from a three-phase mixture 
to a two-phase mixture of Class II. Since kdl and 
k,, % kc, the value of the conductivity of the 
combined discontinuous phases into one dis- 
continuous phase is of no concern. Hence one 
can resort to the analysis for the Class II mixture 
and using equation (14) and write 

k 
km&-_?- 

1 - B’ 

B is obtained from equations (6) or Fig. 4 when 
P,, is known. 

Case 2. .k$ > 100,lO <$ < 100. 
e f 

Consider Figs. 6(a, b, c), and concentrate on 
the first discontinuous phase which is contained 
under curve 1 in Fig. 6(b). It can be seen that 
since k,, $- kc and k,,, one can consider the 
three-phase mixture to be reduced to a two- 
phase mixture in which the continuous phase 
is composed of the original continuous phase of 
the three-phase mixture and the second dis- 
continuous phase. The discontinuous phase 
of this two-phase mixture is the first discontin- 
uous phase of the three-phase mixture. The 
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resulting two phase mixture is of Class II and 
hence 

kce k, _L 

1 - B’ 

where kce represents the conductivity of the 
original continuous phasemixed with the second 
discontinuous phase of the three phase mixture. 
k~~must~evaluated~fo~k~canbedete~~ed. 
This can be accomplished by considering the 
continuous phase of the resulting two-phase 
mixture. This two-phase mixture is composed of 
the original continuous phase of the three- 
phase mixture and the second discontinuous 
phase. Now the technique used to calculate kce 

will depend on the relation between k,, and k, 
Since the ratio of k,, to k, determines if the 
mixture is of Class I, II, III or IV. Hence k,, is 
calculated using an appropriate form of equation 
(9) and equation (10) and then k, for the three- 
phase mixture is evaluated. 

Case 3. 10 c 4 < 100,lO < + < 100. 
e c 

This case is similar to Case 2. Again, consider 
Figs. 66, b, c) and concentrate on the first 
discontinuous phase which is contained under 
curve 1 in Fig. 6(b). One can consider the three- 
phase mixture to be reduced to a two-phase 
mixture in which the continuous phase is 
composed of the original continuous phase of the 
three phase mixture and the second discontin- 
uous phase. The discontinuous phase of this 
two-phase mixture is the first discontinuous 
phase of the three-phase mixture. Smce kdl is no 
longer far greater than kc and k,, the mean 
thermal #nductivity of the resulting two- 
phase mixture will be obtained by equation (10) 
where 

and 

4, = k,, 

and kc, is obtained in the same way as shown in 
Case 2. 

Case4. 4~ lo,%- 10. 
c E 

Case 5. f N lo,? w 1. 
k 

E c 

k kdz Case6. $--k-- 1. 
E c 

Cases 4, 5 and 6 can be treated in exactly the 
same way as Case 3. 

Case 7. 4 < 1 and/or % < 1. 
E c 

The mixtures belonging to this case can be 
treated in a manner similar to that for the pre- 
ceeding 6 cases. The three-phase mixtures are 
reduced to two-phase mixtures and equations 
(9) and (22) in the Appendix are employed. 

For example, 

k dl k 
-N 10 and 2 <if. 
kc c 

This problem is solved by the same approach 
as in Case 3. The three-phase mixture is reduced 
to a two-phase mixture, thus allowing one to 
obtain 

and 

pee = PdZ + pc 

pd = pdl 

kd = kdl. 

However, since kc % kd2, now k,, can be obtained 
from equation (22) 

k,, = kd,(l - PC), 

then equation (9) can be used to predict the 
mean thermal conductivity. 

Thus the technique presented herein pro- 
vides another means of predicting the conducti- 
vity of multiphase mixtures if this mixture can 
be reduced in successive steps to one or more 
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than one two-phase mixtures. Heretofore, 
Hamilton’s equation (20) has represented the 
only means for predicting conductivity of 
multiphase mixtures. Hamilton’s equation is 
somewhat limited in that the shape of the dis- 
continuous phase must be known. Whereas in 
the proposed technique, the shape of the dis- 
continuous phases are arbitrary. 

Com~aris5n5fa~lyticalresult~witbex~e~imental 
data 

Comparison of predicted thermal conductivity 
values as a result of the previous analyses for 
two- and three-phase mixtures with experimental 
data are given in Tables l-5. It is noted that the 
data are compared with results predicted using 
techniques of other studies. 

Two-phase mixtures-Tables 1-4. Data for 
Class I materials were not found ; however, 
Franc1 and Kingery [20] present data for A&O, 

Table 1. Thermal conductivity of alumina, Al,O,, with 
isometric pores nt 200°C. 

-- __. - 
Source of k, k,(cal/s cm “C) Percentage of 

deviation from 
experimental 

data 

Maxwell, equation (16) 0.037 -7.5 

equation (22) 0.041 2.5 

equation (9) 0.037 -75 

Experiment O#O 
=_ -. 

k, = 0.051; P,, = 20%; t = 200°C; Experimental data 
Franc1 and Kingery [ZO]. 

with isometric pores. These data show the 
approach of this paper to be within 7.5 per cent 
which is acceptable considering the discon- 
tinuous phase is not a solid. Comparison of the 
data with the results for Class II, III and IV data 
indicate acceptable agreement with the data. 
Since the shape of the particles dispersed in the 
continuous phase of the Class II materials was 
not considered, agreement with the data is not 

Table 2. Comparison of the predicted thermal conductivities 
with experimental data of class If mixtures 

A. Aluminum spheres in silicone rubber 
-_ 

Source of k, kdBtu/h ft “F) Percentage of 
deviation of 
experimental 

data 

Maxwell, equation (16) 

Ohm, equation (17) 

Ohm, equation (18) 

Equation (10) 

Experiment 
Z.L 

0.1968 3.58 

19 9900 

0.149 -21.6 

0,244 28.4 

0.19 

k, = 0.125; kd = 1180; pd = 16%; Experimental data 
Hamilton [18,19]. 

B. Aluminum cylinders in silicone rubber 
- 

source of s. k,(Btu/%r ft “F) Percentage of 
deviation of 
ex~riment~ 

data 

Hamilton, equation (19) 0.252 - 3.08 
- 

Ohm, equation (17) 19 7200 
- 
Ohm, equation (18) 0,149 -42.7 

Equation (10) 0.244 -6.15 

Experiment 0.26 

k, = 0.125; kd = 118~0; Pd = 16%; Experimental data 
Hamilton [ 18, 191. 

as good with this analysis as is the case of Hamil- 
ton’s technique. It is noticed that equation (10) 
predicts the same value of thermal conductivity 
for the mixture containing spherical particles 
as it does for the mixture containing cylindrical 
particles. Table 2, A and B, indicates a value of 
0.19 for the mixture with the spheres, and a 
value of 0.26 for the cylindrical particles. The 
average of the experimentally measured thermal 
conductivities for the spherical and cylindrical 
particle mixtures is O-225. Equation (10) predicts 
a value of 0.244 which is within 8 per cent of this 
average. This indicates that the technique is 
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Tuble 3. Compurison of the predicted thermal conductivities 
with experimental data of class 111 mixtures 

A. Balsa discs in silicone rubber ( Pd = 25 per cent) 
.._. _..- ~__~~______.. 

Source of k, k,jBtu/h ft “F) Percentage of 
deviation from 
experimental 

data 
-l-.,.-__---_l_---~..- -.-- ..-.- -. . . 
Maxwell. equation (16) 0.093 -4.13 
--____-_-.- ..--.-. ~-- __ - .--- ~_ _-- 
Ohm, equation (17) 0.0998 2.9 
-__-. _ ~~~ 
Ohm, equation (18) 0.06 12 - 36.1 

_ .__._I-- _._~~ 
Equation (9) 0.0934 -3.71 
.--__~- _..___..-. __-~-.-__-_ .._.__ - 
Experiment 0.097 

B. Balsa discs in silicone rubber (Pd = 14 per cent) 
_._.______.__._~._~- -.__~-_-. ._ 

Source of k, k,,,(Btu/h ft “J?) Percentage of 
deviation of 
experimental 

data 
--..- -- _-.- _____.._ __.~_~__ . ..-- 
Maxwell, equation (16) 0,107 -0925 

Ohm, equation (17) 0.11089 2.68 
___. I^__ __ ________-_-. ..-- ~__-.-- 
Ohm, equation (18) 0.0788 -21 
_______.__.___.-.---~ __- -.-._-~_--.- ._.. 
Equation (9) 0.107 -0.925 

~______._ 
Experiment 0.108 

k, = 0.125; k, = 0.0242; P, = 14:;; Experimental data 
Hamilton [18, 191. 

C. Forsterite in magnesia (Mg*SiO~-MgO) 
_ ._~__ _. _._ ~. .._-. _.--.- --- ---- .-.-- 

Source of k, k,,,(cal/s cm “C) Percentage of 
deviation of 
experimental 

data 
__.____-_.__ .--~-______- 
Maxwell, equation (16) 00577 -2.2 
______- 
Ohm, equation (17) 006005 1.78 
____-I-... -- -.- __~__... “._. 
Ohm, equation (18) 004025 -31.8 
~__.-- _.__--~-- 
Equation (9) 0.05825 - 1.27 

^__~_._. 

Experiment @059 
--_______ - ____- 

k, = 0.0675; k,, = 0.011; P, = 13.2% = 200°C; Experi- 
mental data Kingery [3]. 

Table 4. Comparison of the predicted thermal conductivities 
with experimental duta of class IV mixtures 

A. Synthetic silica in dimethyl (silicone rubbers) 
__ _ _~_ ._._~__ ~~.~_ _.-.- ~~~~ .-.. 

Source of k, k,(cal/s cm “c) Percentage of 
deviation from 
experimental 

data 
I.-__~____~.___~----_-.” . . ---~ ~.~ ..- _” ^._.. 
Maxwell, equation (16) 5.21 X lo+ -52-l 

Ohm, equation ( 17) 7.78 X to-‘+ 41.5 

Ohm, equation (18) 4.62 x 1O-4 -16 

Equation (10) 5.58 x 1O-4 I ,45 

Experiment 5.5 X lo-‘+ 

k, = 4.2 x lo-‘+; kd = 40 x 1O-4; Pd = 10%; t = 25°C; 
Experimental data Ratcliffe [22]. 

B. Synthetic silica in methyl vinyl (silicone rubbers) 
~~.__ ._~. __.. __~________~___. __ .-_. ~_~_ ._~_____._. 

Source of k, k&al/s cm “C) Percentage of 
deviation from 
experimental 

data 

Maxwell, equation (16) 6.53 x 1O.-4 8.84 

Ohm, equation (17) 9.53 :< 1o’-4 58.8 
~__~. ~.. -.._ - ~__... .._ -- 

Ohm, equation (18) 4% X 10’ 4 -20 
_ -._ ___ 

Equation (10) 6.11 x lo’-“ 1.83 

Experiment 6.0 x 1O-4 
.._ .________~_._ ___~___ .z: ;-z- .~ ..---- .-...- 
k, = 4.15 x 10-4: kd = 40 x lo-“; Pd = 15%: t = 25°C; 

Experimental data Ratcliffe 1221. 

good for particles of random shapes and gives 
acceptable values for a given particle shape. 

Figures ‘7 and 8 indicate the per cent deviation 
of the predicted values of thermal conductivity 
as determined using the analysis and equation 
from the literature from available experimental 
data vs. P& 

Three-phase mixtures-Table 5. Limited data 
are available for three-phase mixtures. Qata are 
shown and compared with the analyses for Case 
2 in Table 5. As can be seen, the analysis pre- 
dicts a value within 3 per cent of the data. 
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FIG. 8. Per cent deviation of predicted thermal conductivity 
values for class IV mixtures from corresponding experi- 

mental values of thermal conductivity vs. P,. 

SKY 

The extension of Tsao’s model has resulted in 
equations (9) and (10) for predicting the thermal 
conductivity of two-phase heterogeneous mix- 
tures. Equation (10) is applicable to Class II 
mixtures when the discont~uo~ phase particle 
shape is known or unknown. Hamilton’s equa- 
tion (19)yields the best result for Class II mixtures 
if the particles are spherical, cylindrical or any 
other geometrically simple shape: The reduction 
of certain cases of three-phase mixtures to equiva- 
lent two-phase mixtures allows application of the 
analysis to these cases of three-phase mixtures. 
Multiphase mixtures may be amenable to 
solution using the technique if they can be 
reduced to equivalent two or three-phase mix- 
tures. The technique of this paper presents a 
general equation for the prediction of thermal 
conductivity of two-phase mixtures. This equa- 
tion reduces the uncertainty in searching for 
the most appropriate conductivity equation for a 

Table 5. Comparison of the predicted thermal conductivity 
with experimental data of case 2 of three-phase mixtures 

Titania and zinc-oxide in dimethyl at t = 25°C 
~._. .__ _..._ll~ 

Source of k, k,(cal/s cm “C) Percentage of 
deviation from 
experimental 

data 
~- _I___--- 

Analysis OGO136 -3 
of Case 2 (k, = OGW79) 

- - 
Equation (20) o+-KX55 + 10.7 

(assuming discon- 
tinuous phases 
being spherical) 

--~ 
Experiment 0.0014 

____--____ ~___ 
Dimethyl k, = 0+@342; Zinc oxide kdt = 0.055; Titania 

kd2 = 0.019, Pdl = 12x, Pd2 = 18%; Experimental data 
Ratcliffe [22]. 

Table 6. Summary of the study of thermal conductivity of 
too-phi mixtures 

--_____I__-_ -- -_-- -. 
Recommended equations for predicting 

the thermal conductivity 

For a specific For random 
shape of shape of 

di~ontinuous di~ont~uous 
phase phase 

Class I mixtures Equations (22) and (9) 

Class II mixtures Hamilton’s Equation (10) 
equation (19) 

.- 
Class III mixtures Equation (9) 

Class IV mixtures Equation (10) 
: ----_-. 

particular class of material. The equation should 
be applicable to packed beds, emulsions and 
suspensions and other types of two-phase 
mixtures when convection and radiant heat 
transfer are negligible. 

All the results have been summarized in Tables 
6 and 7 for the study of thermal conductivity 
of two-phase and three-phase mixtures. 

The technique will require further comparison 
with experimental data to prove its effectiveness. 
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Table 7. Summary of the study of thermal conductiuity of three-phase mixtures 
_____~.__.._ -- .._ ~~_.._._.__~___ ~ ~_-._.._ -_ ___. _~ _~___.. ._. _~~___. __ __~_ 

Relative values of kdl, kd2 and k, Recommended equations for predicting 
thermal conductivity 

- _- ~~ __-.__ __ 

Case 1: 2 > 100; 4 > 100 Equations (14) and (20) 
P c 

____ -~- 

Case?::> 100; lO<$< 100 Equations (14), (10) and (20) 
c c 

~_ .~____ 

Case3:10<~<100; lO<~clOO Equations (10) and (20) 
c e 

~_______ .~ 
k 

Case4:A 
k, 

-10; %2_10 Equations (10) and (20) 
c 

____~_ 

k 
Case 5.2 

’ 4 
h.10; %_I Equations (10) and (20) 

e 
-- _._- ---_- 

k k 
Casc6:d’~.~w1 

k, k, 
Equations (9), (10) and (20) 

-- --~.--- .- 

Case7::<1 and/or ?<I Equations (9), (lo), (14), (22) and (22) 
c c 

--- -~ ____.-_.. 
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APPENDIX 

Equations for Predicting Conductivity of 
Mixtures 

A. Maxwell [12]-two-phase mixtures : 

k = k&t, + 2k - 2PAk - Ul 
kd + 2k, + P,(k, - kd) ’ 

B. Powers [17]-two-phase mixtures : 
1. Laminae-parallel to heat flow 

k, = k,P, + k,P,. 

(16) 

(17) 

21. A. J. Loaa, Thermal conductivity: VIII, a theory of 
thermal conductivity of porous materials, J. Am. 
Ceram. Sot. 3l, 96-99 (1954). 

22. E. H. RATCLIFFE, Thermal conductivity of silicone 
rubber and some other elastomers, Trans. Inst. Rubber 

Znd. 38(5), T181-T195 (1962). 

2. Multi-phase mixtures 

k, = k, 

l- 
m Pi(ni - 1) (k, - ki) 

c ki + (ni - 1) ki 
i=2 

m 

l+ 
c 

Pi(k, - ki) 
ki + (ni - 1) ki 

i=.2 

nj = 3 for spherical particles 

D. Tsao [l l]-two-phase mixtures : 

J 
k,+(k,-k,)S~c-‘(~~dP, 

PI 

(21) 

2. Laminae-perpendicular to heat flow E. Franc1 and Kingery [20]-porous solids : 

k, = k,k, 
(18) 

k,,, = k,(l - PJ. (22) 
Pdk, + P,k,’ F. Loeb [21]-porous solids considering radia- 

C. Hamilton [18, 19]-two-phase and multi- tion: 
phase mixtures : 

1. Class II mixtures with known particle 
k, = k, 

[ 
(1 - P,,) 

shapes P,, 
f (23) 

k = 0, + (n - l)k, - (n - l)P,(k, - k,)] 
’ Pjk$4’OeydTi + (1 - Pj) 1 

m 
kd+(n--l)k,+P,(k,-k,,) ’ 

(19) 

Rbum&On a expose une technique thtorique pour p&dire la conductivitt thermique de melanges 
solides hetbrogenes. Le modele de Tsao, qui predit la conductivitt thermique de melanges de deux phases 
solides, a tte modit% et ttendu. La technique de cet article ne necessite pas de donnkes experimentales sur les 
deviations moyenne et standard de la fonction de porosite unidimensionnelle qui d&it la distribution de 
la phase discontinue comme dans le cas du modele de Tsao. On suppose une distribution parabolique de la 
phase discontinue et les constantes de la distribution parabolique sont determinees par l’analyse et present&es 
en fonction de la fraction volumique de la phase discontinue. Ainsi, on evite d’avoir besoin des valeurs des 
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deviations moyenne et standard. La conductivite thermique tquivalente d’un cube unite de melange est 
obtenue a l’aide de la fonction de distribution et des conductivites thermiques des constituants. On montre 
que la technique employee predit des valeurs de conductivite thermique & 8 % pres des resultats experi- 

mentaux disponibtes. 

Zusammenfassung-Es wurde eine Theorie fiir die Berechnung der Warmeleitfahigkeit heterogener fester 
Mischungen entwickelt. Tsao’s Model1 zur Bestimmung der Wgrmeleitfahigkeit iron zweiphasigen festen 
Gemischen wurde moditiziert und erweitert. Diese Theorie erfordert im Gegensatz zu Tsao’s Model1 keine 
experimentellen Daten tlber die mittleren und die Standardabweichungen der eindimensionalen 
Por~sit~tsfunktion, welche die Verteilung der djskontinuierlichen Phase beschreibt. Es wird eine para- 
bohsche Verteilung der diskont~uierl~chen Phase angenomm~ ; die Konstanten dieser Ve~eil~g werden 
durch Berechnung bestimmt und als Funktiondes Volumen~teils der diskontinuierlichen Phasedargestellt. 
Damit sind die Werte der mittleren und der Standardabweichungen nicht erforderlich. 

Die aquivalente Wiirmeleitfahigkeit eines Einheitswtirfels der M&hung wird in Form der Verteilungs- 
funktion und der Wlrmeleitfahigkeit der komponenten dargestellt. Es wird gezeigt, dass die mit Hilfe der 
Theorie vorhergesagten Werte der Warmeleitfahigkeit innerhalb von 8 % der verftigbaren Versuchsergeb- 

nisse liegen. 

A%%oTa%%Xf--Paspa6oTaebl: reopeT%qecu%e %ero%r4 pacsera ~e~~o%poao~~focT~ rieo%aopo~- 
HbfX CNeCet TBepJ&fX BN.fJeCTB. Mo@n#i%%upona%a MOAeJIb I(30 AJIR PaWeTa TeII;rOIfpOBO& 

HOCTH ~BYX$la3HbIX CMeWt TBepAbIX BeUJeCTB. HO IIpeAJI0RfeHHOft MeTOAI4Ke Ire Tpe6yeTCR 

3KClIepHMeHTaJfbHMX AaHHblX II0 CpeAHeMy B CTaH~apTHOMY OTKZfOIfeHMFfM OaHOMepHOti 

@y~KqM(ki 06~eM~oroco~e~Hta~~f~~Knmse~n~,on~cnBalo~el pacnpe~enerrue %ano~u%Tenn. 
3~0 %%eer %ecro n %ogen% Hao. Hpe%noxaraerc% napaFojr%recrioe pacnpe~enetrse uri.nro- 
se%%%, tfpW%eM ~0cTo~HH~e pac%pe~~~e%j~~ onpe~e~%mTc% %a a%a~~~a 3t np~~cTan~e%bl n 
Bwae (PYHKQIIH 06%eMHOl-0 co~epmaHwFf BKJIWfeHEI&. Tanmi 06pa3OM, OTffaaaeT HeOtiXO@- 

MOCTbB CpeAHeM EiCTaHJJZkpTHOM OTKJIOIieHMRX.~KBMB~~eHTH3FITe~.?OlI~OBO~HOCTbe~llftll~~ 

o6dfa CMeCM BbfBeReHa B 3BBHCHMOCTB OT @J'HK~MK PaClIpe~eJIeHffff R TeffJfOffpOBOAIiOCTM 

cocTasnm0~nx. IIPHB~A~~TCR MeTogxKa paweTa Temfonpof3o~ffocTff, oTnwfaf0~affcff 0~ 

IfRBeCTHbfX 3KCIIepMMeIfTZlJIbffhlX AaHHbIX He 6oaree YeM Ha 8%. 


