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Abstract—A theoretical technique to predict the thermal conductivity of heterogeneous solid mixtures has
been developed. Tsao’s model for predicting the thermal conductivity of two phase solid mixtures has been
modified and extended. The technique of this paper does not require experimental data on the mean and
standard deviations of the one dimensional porosity function describing the distribution of the discontinuous
phase as is the case with Tsao’s model. A parabolic distribution of the discontinuous phase is assumed and
the constants of the parabolic distribution are determined by analysis and presented as a function of the
discontinuous phase volume fraction. Thus, the need for values of the mean and standard deviations is
circumvented. The equivalent thermal conductivity of a unit cube of the mixture is derived in terms of the
distribution function, and the thermal conductivity of the constituents. The technique is shown to predict
thermal conductivity values within 8 per cent of available experimental data.

NOMENCLATURE
B, constant in equation (5);

b, distance between the vertex and the
edge of the square in Fig. 3 [ft or cm];

C, constant in equation (5);
C', negative value of C;

C,, constant in equation (3);
C,, constant in equation (3);
d, diameter of pore [cm];
e,  emissivity;

k, thermal conductivity [Btu/hft°F or

cal/scm °C];
n 3
P, phase volume fractions;
P,, one dimensional porosity [ft ~!];
P,, two dimensional porosity;
P;, bulk porosity;
P,,, cross-sectional pore fraction;
P;, longitudinal pore fraction;
R, thermal resistance [h °F/Btu];
T, absolute temperature [°R or °K].

t Instructor, Mechanical Engineering Department:
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Greek symbols

y,  geometrical pore factor;

8, avalue used in Fig 3 [ft];

4, meanof P, [ft™!];

o, standard deviation of P, [ft™'];
o', radiation constant [erg/cm? s °C*];
¥, sphericity.

Subscripts
¢, continuous phase;
d, discontinuous phase;
e, equivalent;
i, number of phase;
m, mean;
s, solid.

INTRODUCTION
A NUMBER of studies [1-10] have been conducted
to develop techniques for predicting the thermal
conductivity of heterogeneous systems. So far,
no general equation exists to predict the thermal
conductivity of two-phase mixtures. Tsao [11]
has developed a relationship as seen in the
Appendix for predicting the thermal conduc-
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tivity of two-phase materials; however, experi-
mental data are necessary before values of
conductivity can be calculated. These experi-
mentally determined data are the conductivity
of the constituents and u and o, the mean
and standard deviation of a “one dimensional
porosity” P,, which relate P, to a “‘two dimen-
sional porosity”, P,. However, it should be
emphasized that u and ¢ are difficult to obtain.
The product of P, and P, equals P,, the bulk
porosity. P, and P, were developed to overcome
the inadequacy of characterizing the material
by the bulk porosity, P;. Tsao demonstrated
this inadequacy by showing that using the
bulk porosity in the two simplest hetero-
geneous models—series or parallel arrange-
ments of the constituents—for effective thermal
conductivity produced different values of ther-
mal conductivity for a given case. Tsao de-
veloped a relation for P, in terms of P, using
probablistic theory and then using the additivity
of conductances in parallel developed a relation
for the effective thermal conductivity of the
mixture in terms of Py, u, ¢ and the thermal
conductivity of the constituents.

This study which extends Tsao’s model
circumvents the necessity of experimentally
determining z and ¢ since these data are not
required. The proposed technique is based on
assuming a parabolic distribution of the dis-
continuous phase in the continuous phase.
The parabolic distribution is expressed in
terms of constants dependent on the propor-
tions of the constituents. Analysis yields values
of these constants as a function of the con-
stituent proportions. A unit cube of the mixture
is divided into differential elements perpendicu-
lar to the assumed unidirectional heat flow.
Each element contains some of the continuous
and the discontinuous phases. An expression
for equivalent thermal resistance is derived
for the cube on the basis of the anology between
heat and electrical flow. This expression is in
terms of the constants of the parabola and ther-
mal conductivity of the constituents. Thus
the only requirements for predicting the equiva-
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lent conductivity of the mixture using the
model are the conductivities and proportions
of the constituents. The proposed model is
extended further to predict the thermal con-
ductivity of three and multiphase mixtures for
certain cases. The prediction technique is sup-
ported by experimental data. Figure 1 classifies
heterogeneous systems and indicates the area
of concentration of this study.

RELATED STUDIES

Maxwell [12] pioneered in the study of the
thermal conductivity of two-phase mixtures.
He derived an equation to predict conductivity
on the basis of potential theory. Rayleigh [13]
in 1892 derived a series solution for heat
conduction through a square array of uniformed
sized spheres. Fricke [14] extended Maxwell’s
analysis and derived an equation for ellipsoids
suspended in a continuous phase. Niesel [15]
developed an equation to predict the thermal
conductivity of solid mixtures containing ran-
domly-oriented, long, thin cylindrical dispersed
particles. Bruggeman [16] also developed a
relation for thermal conductivity of platelets
in continuous phase. Powers [17] utilized
Ohm’s law for parallel and series orientations
of the continuous and discontinuous phases.
Hamilton [18, 19] classified mixtures into four
groups.

ClassI. k., > k; or % > 100;
d
ka
ClassII. k., <k; or ke 100;

c

ClassIII. 1 < lcﬁ < 100;
kq

ClassIV. 1 < {5 < 100.
He was mainly concerned with Class IT mixtures
since Class I, III and IV mixtures are amenable
to Maxwell’s equation. Hamilton accounted
for the shape of the dispersed phase in his
technique for predicting thermal conductivity.



PREDICTION OF THERMAL CONDUCTIVITY

A. SINGLE-PHASE SYSTEMS |
I. Single element

2. Solid solution !
3. Liquid solution

B. TWO-PHASE SYSTEMS
I. Solid - solid mixtures
(Two phase solid mixtures)
Class I
Class O*
Class III
Class IW
Suspensions
Emuisions
Packed Beds
Powder Beds
Porous Materials

popuy

C. THREE-PHASE SYSTEMS

Known properties

Predicted mean thermal
conductivity as a resuit
of this Study, accuracy

8% for two-phase solid
mixtures

{. Two-phase solid~-solid
mixtures with porosity
2. Three-phase solid mixtures

Case | Cose 5
Case 2 Case 6
Case 3 Case 7
Case 4

D. MULTI-PHASE SYSTEMS

J

Predicted mean thermal
conductivity of some porous
systems-as a result of this
study

*Hamilton has derived an equation to predict the
thermal conductivity of Class I mixtures accurately

Fic. 1. Classification of heterogeneous systems and systems investigated in this study.

Fd \L, x Discontinuous phose
Continuous phase

1

us phase

Y L\ 1
z \ Discontinuo
\I/V ¥ y

d)

(e)

//— Continuous phase

/ 7B

—

e )
x

F1G. 2. Model for the study of the thermal conductivity of two-phase mixtures [11}
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Hamilton also developed an equation for
a mixture of n phases for known shapes of the
discontinuous phase. Francl and Kingery [20]
present an acceptable correlation for the pre-
diction of the thermal conductivity of porous
materials which can be extended to three phase
materials for low temperatures—low enough
to neglect radiation. Loeb [21] has attempted
to compensate for radiation effects. Tsao’s
study, which has been cited, appeared to offer
the greatest possibility for a general approach
to predicting thermal conductivity of two phase
mixtures and Tsao’s study serves as the basis
for this paper.

The Appendix gives some of the various
equations presented in the literature to predict
thermal conductivity of mixtures. References
[1, 11, 12, 17-21] compare the equations and
discuss their applicability. The literature reveals
no general technique to predict the thermal
conductivity of two-phase mixtures.

ANALYSIS
Two-phase mixtures
The analysis is based on the following
assumptions for a unit cube of the mixture as
seen in Fig, 2(a). These assumptions are:

1. The heat flux is unidirectional in the x
direction;

2. Thermal convection and radiation are
negligible;

3. Contact resistance between the continuous
and discontinuous phase is negligible;

4. No porosity exists in the mixture;

5. The discontinuous phase is uniformly
dispersed in the continuous phase;

6. Thermally, the mixture is isotropic;

7. In the mechanical mixing process, no
chemical reaction occurs.

The approach of Taso is used. A unit cube
of the mixture as shown in Fig. 2(a) is sliced
into many layers of width dx parallel to the
yz-plane. Phase; of each layer is arranged
as shown in Fig. 2(b) since conductances in
parallel are additive and the effective thermal
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|_— Discontinuous
Phase

20

—Discontinuous
Phase

7 _— |
T 11

N |

I 1
e sl 1#—5/2—4‘ b -]
Fig. 3. Phase distribution for a two-phase mixture as

represented by:

(a) the x-axis bisecting the square (b) the x-axis coinciding
with the lower border of the square. This figure is used in
conjunction with equation (6).

conductivity is unaltered. Figure 2(c) is shown
to fully explain P, and P,. The discontinuous
phase is pictured as concentrated in one quad-
rant of the cube. Then

xO b xi
Pl =7
unit length
and
area of D
P,=——
unit area

Thus P, = P,P,. Now instead of arranging
the thin layers in the sequence as indicated in
Fig. 2(d) as Tsao did, one can arrange these
layers as shown in Fig. 2(e). Thus one can now
now attempt to develop an expression for the
thermal conductivity in terms of y(x) which is
P,(P,) and then determine y(x) for various
proportions of the constituents. It can be
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shown that the equivalent thermal resistance
of the configuration shown in Fig. 2(e) is

x

= 2S & .
¢ kc + (kd - c)y

1-2x

PR 1)

0

which can be used to obtain the thermal con-
ductivity since
1

km = i;- (2)

k; and k. are considered known, but y(x) is
unknown. If y is known, k,, can be calculated.
It is first assumed that P,(P,) or y(x), the dis-
persion of the discontinuous phase which
represents the discontinuous volume fraction
is a normal distribution curve due to the assumed
randomness of dispersion of the discontinuous
phase in the continuous phase. Thus

y = Cyexp(=C,x?). ()

Now C, and C, are almost impossible to de-
termine unless the expression is expanded in
a series such as

C24
y=C1<1—C2x2+—;)'C——...>. (4)

The range of x can be seen to vary from —3
to 1 for the coordinate system of Fig. 2e).
The above series converges rapidly for all x
between —4 and 1; consequently, one may
eliminate all terms except the first two and

y =B+ Cx> (%)

Thus, the normal distribution has been reduced
to a parabolic function. It can be seen that there
will be a set of constants B and C for each
discontinuous volume fraction, P, and con-
sequently a given function y(x) or P,(P,) for
equation (1). Thus, one can simplify the calcula-
tions involved in equation (1) by evaluating
B and C values as a function of P, since the
discontinuous volume fraction would be a

known value for a given two-phase mixture.
Now

P,=2 ? ydx.
0
The problem now resolves to evaluating the
constants B and C for the limiting and interven-
ing conditions and the corresponding P, values.
First assume boundary conditions as

y=1 at x=90

and

y=0 at x=1%

which represent the maximum discontinuous
volume fraction. Equation (5) is an even
function of x; hence only positive values of x,
ie. 0 < x <4 need be considered. Using the
above stated boundary conditions one obtains

B=1
and
= —4

Now P,, the discontinuous phase, is calculated
to be 0-667 which is the maximum discontinuous
phase volume fraction which equation (5) can
represent.

The boundary conditions will change as P,
decreases from the maximum value. Thus for
P, less than 0-667, the general conditions are

y=B+Cx* |x|<a<i}

y=0 at a<|x <3

and

y<1 at x=0.

Other boundary conditions can be visualized
by considering the distribution of the discon-
tinuous in the continuous phase as shown in
Figs. 3(a) and 3(b). Figure 3(a) pictures the
discontinuous phase to be centred in the square.
The boundary of the discontinuous phase is
symmetrical with respect to the x and y axes.
For simplicity, the assumption is made that
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the distances, b, between the vertices of the
boundary of the discontinuous phase and the
edges of the squares are equal. The x axis is
shifted to coincide with the lower edge of the
square in Fig. 3(b). Thus Fig. 2(e) and Fig. 3(b)
are the same. It is assumed further in Fig 3
that as P, decreases from its maximum value
(0-667), the absolute value of y at x = 0 shrinks
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and
C = —4\/(%P,,). (6b)

B and C are plotted in Fig. 4 as functions of P,.

The two-phase mixture is reduced to the
limiting case of one-phase when y =0 at
x=0 and P,=0. Now attention can be
focused on equation (1). Substituting equation

20

10

o8— -—1-16
| I}
06— —-12
c
B
04— —i-8
l— c ]
Q2p— —l-a
o | | | | ! 0
01 02 03 04 o5 06 o7

G

FiG. 4. B and C, constants in equation (5), vs. P,, discon-
tinuous phase volume fraction.

25 and the absolute value of x shrinks 20 at
y = 0, too. From this assumption and equation
(5), it is easy to show that

B = —4/C.
Constants B and C can be calculated in terms
of P, as follows. From Fig. 3(b),
B/2

P,=2 { ydx
V]

B/2

/
=2 g (B + Cx?*)dx
— 2B%/3
or

B = /GP,/2) (62)

(5) into equation (1), letting C = C’ since
C < 0 yields
B/2
r dx
) [k + Bk, — k)] = C'(k; — k)x?

0

R,=2

1-B
k

c

)

Rearranging the first term in the denominator
of equation (7) gives

k. + B(k; — k,) =BK,;+ k(1 — B), (8)
which is always greater than zero since B

varies from O to 1. Equation (7) can be integrated
resulting in

(A) k. > k.
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AL
. N

Fic. 5. (a) Phase distribution for class II mixtures (b)
schematic representation of equivalent phase distribution
for class II mixtures.

- 2
© " J{=Clks — k) [k, + Blk, — k)]}

-1 g _C’(kd - c)
x tan 2\/ {kc T Bk, — k)

1-B

®) k; > k.
R = 1

¢ \/{C,(kd - c)[k + B(kd - kc)]}
i J{k + Blk; — ko)

+2 Uk~ k)
~ 2 J(Ctk ~ k)

1-B
t—— 0
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Thus equation (9) and equation (10) can be used
in conjunction with B and C values obtained
from equations (6) or Fig. 4 for a given P, and
the conductivities k; and k, to predict conduc-
tivity values of two-phase mixtures. Some
caution must be used with equation (10) as will
be seen.

Analysis of the denominator of the log term
in equation (10) for Class 11 mixtures, k; > k,_,
indicates the equation must be used cautiously.
It is possible to obtain log oo when evaluating
the log term if the denominator of the log term
is not evaluated accurately. This can be seen as
follows. Consider the denominator of the inte-
grand of equation (7)

k. + Blky — k) — C'lk; — k) x?

and it can be seen that there is a functional
relationship between the above expression and
the denominator of the log term in equation (10).
Since k; > k., one can write

k. + Bk, — k) — C'lky — k) x* = k(B — C'x?

and the right-hand side of the above expression
equals zero at x = B/2. Thus

ke + Blky — k) — C'lky — k) x*|copp =0

or

[\/ {k. + Blk; — kJ} + g\/ C'lky - kc)] =0.

since

Vike + Bk — kJ} > 0,

K} + 5 {C e~
then
V{k: + Blk; — k.)}

~Bew -k =0 ay

and equation (11)is identical to the denominator
of the log term in equation (10). Thus for Class IT
mixtures, this term must be evaluated carefully
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or log oo which is oo results. This analysis is
limited to Class Il mixtures since k, » k, for this
class only.

Further analysis of equation (10) for Class 11
mixtures shows the equation can be simplified.
Figure 3(b) is shown in Fig. 5(a). Since Fig. 3(b)
is symmetrical with respect to the axis only

Continuous Phase

Second
Discontinuous Phass

(a)

First
Discontinuous Phase

123456

192146107538 __ Contiuous Phase

() Second

Discontinuous Phase

First
Discontinuous  Phase

¥
s o
1
1
| ;o
' |
; |
; N\
l |
. &
F v
Fii. 6. Model for the study of the thermal conductivity of
three-phase mixtures,

positive values of the figure are shown. Figure
5(b) represents the equivalent resistance orien-
tation of the phases. Using Fig 5(b), one can
write

Rcl Rd

R, = 174
¢ R01+Rd

+ R (12)
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R,; and R, represent the resistance of the con-
tinuous phase in rectangle uvfe and the remainder
of the continuous phase respectively. Since
k; » k. R, >» R, equation {12) can be written as

R, R
R = cl d
¢ Rcl

+ RcZ = Rd + Rc2 = Rcz' (13)

Equation (13) indicates the majority of the re-
sistance is dependent on the resistance of the
rectangle uvfe for Class II mixtures. Thus
1.1

km - E Rci’.

and it can be shown that R, is the second
term of equation (10). Hence
k.

= (14
which is valid as long as P, < 66-7 per cent.
If P, =667 per cent, k, is calculated using
equation (10) with B = 1.

T hree-phase mixtures

The development of an equation to predict
the thermal conductivity of three-phase mixtures
and some multiphase mixtures is based on the
independence of k,, on k; when R; € R, or
k; > k. The three-phase mixtures are reduced
to equivalent one or more than one two-phase
mixtores as will be seen. One can construct
Figs. 6(a, b, ¢} for a mixture of two discontinuous
phases in a continuous phase using the same
assumptions as were used in the previous section
for two-phase mixtures. Figure 6(c) is merely
another representation of (b}. This figure shows
the relative phase distributions of the first
discontinuous phase, curve 1, along with the
distribution of the second discontinuous phase,
curve 2, Curve 1 is in general a continuous curve
which can be determined as was done for the
two-phase case. In general, curve 2 is an arbitrary
continuous, piece-wise continuous or discon-
tinuous curve. No simple analytical technique
exists to determine curve 2. Curve 2 can be
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10 T T

Ohm, equation(I7)

[o]

5
i
I

:

N

Qo
I
1

Percentage of deviation from experimental values,

Ohm,equation{I8)
o \
_4 I I
G 15 20 25
g, %

FIG. 7. Per cent deviation of predicted thermal conductivity
values for class III mixtures from corresponding experi-
mental values of thermal conductivity vs. P,.

determined experimentally and then R, and
hence k,, can be determined from

R - dx
¢ kc + (kdl - c)yl + (de - kc)yZ‘

However, it is not always possible to determine
curve 2. Special cases of three-phase mixtures are
developed as follows by reducing the three phase
mixtures to equivalent two-phase mixtures.

Considering the infinite number of ratios and
combinations of k,,/k, and k,,/k., seven general
cases are classified as follows:

(15)

k k
Case 1. -2 > 100,-2 > 100;
ase kc 00, — kc > 100;
ky,
Case 2. k >10010<k < 100;
ky ks,
Case3. 10 < — < 100,10 < -= < 100;
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Case 4. — ~ :
ase K 10,— kc 10;

k k
Case 5. -~ 2 01;
ase k. 10, —= PR

k k
Case 6. 4L .. 792 _ 1.
ase Py K 1;

k
Case 7. -I?<1 and/or kaz <1.

These cases are considered as follows:

kdl kd2
kc > 100,—= kc

The discontinuous phase can be considered to
be composed of the first and second discon-
tinuous phases. Thus P; = P, + P;, and the
mixture is reduced from a three-phase mixture
to a two-phase mixture of Class II. Since k;, and
ks, > k., the value of the conductivity of the
combined discontinuous phases into one dis-
continuous phase is of no concern. Hence one
can resort to the analysis for the Class Il mixture
and using equation (14) and write

;_k‘-'
"™ 1-B

B is obtained from equations (6) or Fig. 4 when
P, is known.

Case 1. 100.

k

k
Case 2. %> 100,10 <$ < 100.

(4 c

Consider Figs. 6(a, b, ¢), and concentrate on
the first discontinuous phase which is contained
under curve 1 in Fig. 6(b). It can be seen that
since k;; > k. and ky,, one can consider the
three-phase mixture to be reduced to a two-
phase mixture in which the continuous phase
is composed of the original continuous phase of
the three-phase mixture and the second dis-
continuous phase. The discontinuous phase
of this two-phase mixture is the first discontin-
uous phase of the three-phase mixture. The
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resulting two phase mixture is of Class Il and
hence

kCE

b = T
where k., represents the conductivity of the
original continuous phase mixed with the second
discontinuous phase of the three phase mixture.
k.. mustbeevaluated before k,,can bedetermined.
This can be accomplished by considering the
continuous phase of the resulting two-phase
mixture. This two-phase mixture is composed of
the original continuous phase of the three-
phase mixture and the second discontinuous
phase. Now the technique used to calculate &,
will depend on the relation between k,, and k..
Since the ratio of k,;, to k. determines if the
mixture is of Class I, II, III or IV. Hence k.. is
calculated using an appropriate form of equation
(9) and equation (10) and then k,, for the three-
phase mixture is evaluated.

10<~k#‘-1~< 100,10<£<-‘1-2~< 100.
k. ke

This case is similar to Case 2. Again, consider
Figs. 6(a, b, ¢) and concentrate on the first
discontinuous phase which is contained under
curve 1 in Fig. 6(b). One can consider the three-
phase mixture to be reduced to a two-phase
mixture in which the continuous phase is
composed of the original continuous phase of the
three phase mixture and the second discontin-
uous phase. The discontinuous phase of this
two-phase mixture is the first discontinuous
phase of the three-phase mixture. Since kg, is no
longer far greater than k, and k,,, the mean
thermal conductivity of the resulting two-
phase mixture will be obtained by equation (10)
where

Case 3.

Pce“_de2+Pc
Py= Py

and
kd=kdl

S. C. CHENG and R. I. VACHON

and k,, is obtained in the same way as shown in
Case 2.

b 1052 10

4.
Case k. K,
k k
5 M a2
Case —-—kc 10, __kc 1
kdl de

Cases 4, 5 and 6 can be treated in exactly the
same way as Case 3.

k k
Case 7. - <1 andjor -2 <1.
k. k.

The mixtures belonging to this case can be
treated in a manner similar to that for the pre-
ceeding 6 cases. The three-phase mixtures are
reduced to two-phase mixtures and equations
(9) and (22) in the Appendix are employed.

For example,

kay ki 1

NCER | Pz o~

k. 0 and k. < 100
This problem is solved by the same approach
as in Case 3. The three-phase mixture is reduced
to a two-phase mixture, thus allowing one to
obtain

P.= Py + P,
Py= Py

and
ky = kyy.

However, since k, > k;,, now k., can be obtained
from equation {22)

kce = kdz(l - Pc)’

then equation (9) can be used to predict the
mean thermal conductivity.

Thus the technique presented herein pro-
vides another means of predicting the conducti-
vity of multiphase mixtures if this mixture can
be reduced in successive steps to one or more
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than one two-phase mixtures. Heretofore,
Hamilton’s equation (20) has represented the
only means for predicting conductivity of
multiphase mixtures. Hamilton’s equation is
somewhat limited in that the shape of the dis-
continuous phase must be known. Whereas in
the proposed technique, the shape of the dis-
continuous phases are arbitrary.

Comparison of analytical results withexperimental
data

Comparison of predicted thermal conductivity
values as a result of the previous analyses for
two-and three-phase mixtures with experimental
data are given in Tables 1-5. It is noted that the
data are compared with results predicted using
techniques of other studies.

Two-phase mixtures—Tables 1-4. Data for
Class 1 materials were not found; however,
Francl and Kingery [20] present data for Al,O,

Table 1. Thermal conductivity of alumina, Al,O;, with
isometric pores at 200°C.

Source of k,, knfcal/scm °C)  Percentage of
: deviation from
experimental
data
Maxwell, equation (16) 0037 =75
equation (22) 0-041 2:5
equation (9) 0037 -75
Experiment 0040
k. = 0051; P,=20%; t=200°C; Experimental data
Francl and Kingery [20].

with isometric pores. These data show the
approach of this paper to be within 7-5 per cent
which is acceptable considering the discon-
tinuous phase is not a solid. Comparison of the
data with the results for Class I, IIT and IV data
indicate acceptable agreement with the data.
Since the shape of the particles dispersed in the
continuous phase of the Class II materials was
not considered, agreement with the data is not
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Table 2. Comparison of the predicted thermal conductivities
with experimental data of class I1 mixtures

A. Aluminum spheres in silicone rubber

Source of k,, k{Btu/hft °F)  Percentage of
deviation of
experimental

data
Masxwell, equation (16} 0-1968 358
Ohm, equation {17) 19 9900
Ohm, equation (18) 0-149 -216
Equation (10) 0244 284
Experiment 019

k= 0125; k,=1180; P,=16%;
Hamilton [18, 19].

Experimental data

B. Aluminum cylinders in silicone rubber

Source of k,, k.(Btu/hr ft °F)  Percentage of
deviation of
experimental

data
Hamilton, equation (19) 0252 —308
Ohm, equation (17) 19 7200
Ohm, equation {18) 0-149 —427
Equation (10) 0244 —615
Experiment 0-26

ko= 0125; k;=1180; P,=16%;
Hamilton [18, 19].

Experimental data

as good with this analysis as is the case of Hamil-~
ton’s technique. It is noticed that equation (10)
predicts the same value of thermal conductivity
for the mixture containing spherical particles
as it does for the mixture containing cylindrical
particles. Table 2, A and B, indicates a value of
0-19 for the mixture with the spheres, and a
value of 026 for the cylindrical particles. The
average of the experimentally measured thermal
conductivities for the spherical and cylindrical
particle mixtures is 0-225. Equation (10) predicts
a value of 0-244 which is within 8 per cent of this
average. This indicates that the technique is
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Table 3. Comparison of the predicted thermal conductivities
with experimental data of class 111 mixtures

A. Balsa discs in silicone rubber (P, = 25 per cent)

§. C. CHENG and R. I. VACHON

Table 4. Comparison of the predicted thermal conductivities
with experimental data of class IV mixtures

A. Synthetic silica in dimethyl (silicone rubbers)

k. (Btu/h{t °F}  Percentage of
deviation from

Source of &,

kfcal/sem °C)  Percentage of
deviation from

Source of k,,

experimental experimental
data data
Maxwell, equation {16) 0093 o —413 &;axwell, equation {16) 5~2V1 x 1074 ~5>2‘;M
Ohm, equation (17) 0-0998 - 29 ghm, equation {17} B 778 x 107* 41-5 o
6hm, equation (18) 0-0612 ) —36°1 i Ohm, equation (18) 462 x 107* —f16
Equation (9) 0-0934 —371 a Equation (10} 5-58 x 1674 1-45
Experiment 0097 E.xperiment 55 x 107¢

B. Bulsa discs in silicone rubber (P4 = 14 per cent)

Source of k,, k{Btu/h ft °F)  Percentage of
deviation of
experimental

data
Maxwell, equation (16) 0107 —0925
Ohm, equation (17) 0-11089 268
Ohm, equation (18) 00788 27
Equation (9) 0-107 — (925
Experiment

0-108

k.= 0-125; ky = 00242; P, = 147%,; Experimental data
Hamilton [18, 19].

C. Forsterite in magnesia (Mg,5i04-MgO}

Source of k,,

k,fcal/scm °C)  Percentage of
deviation of
experimental
data
Maxwell, equation (16} 00577 —-22
Ohm, equation (17) 0-06005 178
Ohm, equation (18) 0-04025 -31-8
Equation {9) 005825 -127
Experiment 0059

k., = 00675; k, = 0-011; P; = 132%
mental data Kingery [3].

= 200°C; Experi-

k=42 x 107%; k,= 40 x 107%; P, = 10%; t = 25°C;
Experimental data Ratcliffe [22].

B. Synthetic silica in methyl vinyl (silicone rubbers)

Source of k,, k.{cal/scm °C)  Percentage of
deviation from
experimental
data
Maxwell, equation (16)  6-53 x 10~* 884
Ohm, equation (17) 9-53 % 1074 388
Ohm, equation (18) 48 x 1074 -20
Equation (10) 611 x 107 1-83
Experiment 60 x 107*

k=415 x 107%; k, = 40 x 107%; P, = 15%: 1 = 25°C;
Experimental data Ratcliffe [22].

good for particles of random shapes and gives
acceptable values for a given particle shape.

Figures 7 and 8 indicate the per cent deviation
of the predicted values of thermal conductivity
as determined using the analysis and equation
from the literature from available experimental
data vs. P,

T hree-phase mixtures—Table 5. Limited data
are available for three-phase mixtures. Data are
shown and compared with the analyses for Case
2 in Table 5. As can be seen, the analysis pre-
dicts a value within 3 per cent of the data.
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Fi1G. 8. Per cent deviation of predicted thermal conductivity
values for class IV mixtures from corresponding experi-
mental values of thermal conductivity vs. P,.

SUMMARY

The extension of Tsao’s model has resulted in
equations (9) and (10) for predicting the thermal
conductivity of two-phase heterogeneous mix-
tures. Equation (10) is applicable to Class 11
mixtures when the discontinuous phase particle
shape is known or unknown. Hamilton’s equa-
tion (19) yields the best result for Class I mixtures
if the particles are spherical, cylindrical or any
other geometrically simple shape. The reduction
of certain cases of three-phase mixtures toequiva-
lent two-phase mixtures allows application of the
analysis to these cases of three-phase mixtures.
Multiphase mixtures may be amenable to
solution using the technique if they can be
reduced to equivalent two or three-phase mix-
tures. The technique of this paper presents a
general equation for the prediction of thermal
conductivity of two-phase mixtures. This equa-
tion reduces the uncertainty in searching for
the most appropriate conductivity equation for a

Table 5. Comparison of the predicted thermal conductivity
with experimental data of case 2 of three-phase mixtures

Titania and zinc-oxide in dimethyl at t = 25°C

Source of k,, k,{cal/s em °C) Percentage of
deviation from
experimental
data
Analysis 0-00136 -3
of Case 2 (k.. = 0-00079)
Equation (20) 000155 +107
(assuming discon-
tinuous phases
being spherical)
Experiment 00014

Dimethyl &, = 000042; Zinc oxide k, = 0-055; Titania
kg, = 0019, Py, = 129, Py, = 18%;,; Experimental data
Ratcliffe [22].

Table 6. Summary of the study of thermal conductivity of
two-phase mixtures

Recommended equations for predicting
the thermal conductivity

For a specific For random
shape of shape of
discontinuous discontinuous
phase phase
Class I mixtures Equations (22) and (9)
Class II mixtures Hamilton’s Equation (10)
equation (19)
Class III mixtures Equation (9)
Class I'V mixtures Equation (10)

particular class of material. The equation should
be applicable to packed beds, emulsions and
suspensions and other types of two-phase
mixtures when convection and radiant heat
transfer are negligible.

All the results have been summarized in Tables
6 and 7 for the study of thermal conductivity
of two-phase and three-phase mixtures.

The technique will require further comparison
with experimental data to prove its effectiveness.
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Table 7. Summary of the study of thermal conductivity of three-phase mixtures

Relative values of ky;, kyy and k,

Recommended equations for predicting
thermal conductivity

k k
Casel:wkﬂ> 100; %> 100

c

Equations (14) and (20)

k k
Case2:~}:—l~>100; 10<—k‘2<100

£ (g

Equations {14), (10) and (20}

k k
Case 3: 10 < % <100; 10 < -’:—2 < 100 Fquations (10) and (20)
i kay . kys .
Case 4: T 10; o~ 10 Equations (10) and {20)
(4 £
. kg 3 kg .
Case §5: T ~ 10; " 1 Equations (10} and (20)

kay ke

Case 6:
ase kc k.

Equations (9), (10) and (20}

k k
Case 7:——,-31- <1 andfor -2 <1
4 £

Equations (9), (10), (14), (22) and (22)
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APPENDIX 2. Multi-phase mixtures
Equations for Predicting Conductivity of B m -
Mixtures [ - Z Pn; — 1) (k, — k)
A. Maxwell [12]—two-phase mixtures: — ki+ (i — 1k,
k [k + 2k, — 2Pk, — k,)] b = by = @0
kn= T 2k + Pk —Fy 1O 14y Pzk)
d (4 d\"e d k,'+(ni_l)ki
B. Powers [17]—two-phase mixtures: - i= -
1. Laminae—parallel to heat flow n; = 3 for spherical particles
km = kP, + k;Py. (17)  D. Tsao [11]—two-phase mixtures:
1
k= < 1)
f 2
1 P,—u
- ] P
ke + (kg — ko) SG \/(27[)6 < o > dP,
pP1
2. Laminae—perpendicular to heat flow E. Francl and Kingery [20]—porous solids :.
k= k(1 — P,). 2
km — kckd ) (18) m s( d) ( 2)
Pk, + Pk, F. Loeb [21]—porous solids considering radia-

tion:

C. Hamilton [18, 19]—two-phase and multi-
ky, = kg [(1 - P,)

phase mixtures:
1. Class II mixtures with known particle
shapes

_k[ky+ (n — Dk, — (n — DPyk, — k,)]
B ki + (n — Dk, + Pk, — ky) ’

Pcs
¥ P Hoeydl + (1 = P,.)]' @3)

-

(19)

Résumé—On a exposé une technique théorique pour prédire la conductivité thermique de mélanges
solides hétérogénes. Le modéle de Tsao, qui prédit la conductivité thermique de mélanges de deux phases
solides, a été modifié et étendu. La technique de cet article ne nécessite pas de données expérimentales sur les
déviations moyenne et standard de la fonction de porosité unidimensionnelle qui décrit la distribution de
la phase discontinue comme dans le cas du modéle de Tsao. On suppose une distribution parabolique de la
phasediscontinue et les constantes de la distribution parabolique sont déterminées par I'analyse et présentées
en fonction de la fraction volumique de la phase discontinue. Ainsi, on évite d’avoir besoin des valeurs des
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déviations moyenne et standard. La conductivité thermique équivalente d’un cube unité de mélange est

obtenue A I'aide de la fonction de distribution et des conductivités thermiques des constituants. On montre

que la technique employée prédit des valeurs de conductivité thermique 2 89 prés des résultats expéri-
mentaux disponibles.

Zusammenfassung—Es wurde eine Theorie fiir die Berechnung der Wirmeleitfihigkeit heterogener fester
Mischungen entwickelt. Tsao’s Modell zur Bestimmung der Warmeleitfahigkeit von zweiphasigen festen
Gemischen wurde modifiziert und erweitert. Diese Theorie erfordert im Gegensatz zu Tsao’s Modell keine
experimentellen Daten {iber die mittleren und die Standardabweichungen der eindimensionalen
Pordsititsfunktion, welche die Verteilung der diskontinuierlichen Phase beschreibt. Es wird eine para-
bolische Verteilung der diskontinuierlichen Phase angenommen ; die Konstanten dieser Verteilung werden
durch Berechnung bestimmt und als Funktion des Volumenanteils der diskontinuierlichen Phase dargestellt.
Damit sind die Werte der mittleren und der Standardabweichungen nicht erforderlich.

Die dquivalente Warmeleitfihigkeit eines Einheitswiirfels der Mischung wird in Form der Verteilungs-
funktion und der Wirmeleitfihigkeit der komponenten dargestellt. Es wird gezeigt, dass die mit Hilfe der
Theorie vorhergesagten Werte der Warmeleitfihigkeit innerhalb von 8 9/ der verfiigbaren Versuchsergeb-

nisse liegen.

Annoranma—PaspaboTansl TeopeTHYECKHMe METOIH paciera TEeMIONPOBOZHOCTH HEOJHODOH-
HBIX cMecelt TBepabix Bemects. Moguduuuposara mogens Ilao gna pacderta TensaonpoBop-
HOCTH ABYX(asHHX cmecelt TBepaerx Bemects. Ilo mpemiomennoit Meroguke He TpefyeTca
JKCHEPUMEHTANbHEX [AHHLIX II0 CPeAHeMY H CTAHAAPTHOMY OTKIIOHEHMAM OJHOMEpPHOMR
QYHHEIMK 00HeMHOTO COACPHARNA BRIIOYEHIA, ONUCHBAIOUIEH pacipeeseHue HATIOJHUTETA .
9ro umeer mecto B Mofenu Ilao. Ilpexnonaraerca nmapafosmdeckoe pacnpejiesieHie BRIIO-
YeHn, IpUUYEM MOCTOSHHBIE PacHpefielleHHA ONpPEeNAOTCS W3 AHAJIM33d M UPENCTABJIEHH B
Bujie QyHxiun o0beMHOro comep:KaHMA Bruodenuii. Taxmm oOpasom, oTnagaer neoOxomu-
MOCTH B CpeHeM W CTAHJAPTHOM OTHJIOHEHMAX. JKBUBAICHTHAM TEIIONPOBOAHOCTD €LMHHIEL
00GbéMa cMecu BEIBEJEHA B 3aBUCHMOCTH 0T QYHKIMM pacrpejeseHus N TeNONPOBORHOCTH
cocTaBagiomux. IIpuBoguTca MeToaMKA pacdeTa TENJIONPOBOAHOCTH, OTAMYAIOMIAACH OT
N3BECTHHIX 3KCIEPUMEHTAIBHLIX JAHHHX He Gonee uem Ha 8%,



